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Abstract - In this paper we present the development
of a combined system which is able to exploit the
benefits of two methods used for tissue
characterization, strain imaging and tissue classi-
fication using a trainable classification system. Our
system is able to acquire in vivo multi-compression
rf-data for the calculation of the tissue strain, i.e. the
elastic properties of tissue, induced by tissue
compression. At the same time a Neuro-Fuzzy
classification system is used to map the tissue
malignancy. In vivo Classification results and in
vivo strain images are presented. The images of the
two new modalities are compared to demonstrate
the advantages and restrictions of both methods.

INTRODUCTION

In the past, several ultrasound methods have been
described to assess the malignancy of prostate
tissue. Two major approaches are the investigation
of tissue elasticity by strain imaging [1] and the
detection of malignantant tissue areas by tissue
classification with a trainable classification
system [2].

Ultrasonic strain imaging refers to the visualization
of tissue elasticity for medical diagnosis. With this
technique small displacements between ultrasonic
image pairs which are acquired under varying axial
compression are determined using a cross-

correlation analysis of corresponding a-lines of an
rf-data set. The derivative of the displacement field
is equal to the strain in the tissue. Tumors often can
be detected by palpation, therefore strain imaging
promises to yield good results to detect such
tumors. For multicompression strain imaging a
sequence of rf-images is acquired under step-wise
increasing compression in order to extend the
dynamic range and the resolution of the strain
estimates [3]. Due to the lateral motion of the
insonified object with respect to the axial beam
direction the use of a sector probe leads to
significant motion artifacts even in a plane strain
state. A fast and efficient method for the correction
of lateral motion artifacts is described in [4,5]. An
efficient method for the fast calculation of strain
images is described in [6]. The methods [5] and [6]
were used in this paper.

Tissue classification means the segmentation of
image data into small segments and the calculation
of statistical tissue parameters either obtained from
spectrum analysis or texture analysis of the
ultrasonic echo data. The parameters are used in
combination with known histological findings to
construct a classification system which is able to
determine the malignancy state within a region of
interest [7,8].



In this paper we present a combined system which
is able to exploit the benefits of both methods. Our
system is able to acquire in vivo multi-compression
rf-data for the calculation of the tissue strain which
is induced by tissue compression in the order of
0.1%. At the same time a Neuro-Fuzzy classification
system described in [9] is used to map the tissue
malignancy. Histological cross-sections of the gland
were used as a gold standard for the construction of
the Neuro-Fuzzy classification system. The classifi-
cation system was trained with more than 30,000
parameter vectors with known histological findings
from the histological cross-sections.

METHODS

The strain images were acquired using a
commercially available Combison 330 ultrasound
system (Kretztechnik GmbH, Austria) with a
7.5 MHz transrectal probe. A multicompression
rf-image series including up to 10 images was
acquired at discrete levels of tissue compression
using the setup described in [3]. The sampling rate
was 33 MHz. The data were stored for off-line
processing.

A) STRAIN IMAGING

For strain imaging, first the lateral motion within the
area of interest was estimated and corrected by a
two-dimensional optical flow cross-correlation
technique described in [10].

Afterwards the axial strain in the tissue was
determined using the time efficient phase root
seeking algorithm described in [6].

In a third step the strain images were color-coded
and displayed such that dark areas correspond to

tissue regions with low strain and bright areas
correspond to regions with high strain (Figure 2d).

B) TISSUE CLASSIFICATION

For tissue classification we used the procedure
described in [4]. Figure 1 shows a schematic
representing the signal processing strategy.
16 common tissue parameters were extracted from
the rf-data in over 30,000 segments and stored in a
data base.

The data base was then used to train a Neuro-Fuzzy
classifier which is based on a first order Takagi-
Sugeno system with two outputs classes. The
system was initialized by a time efficient mountain
clustering method proposed by Yager et al [11]. The
segments were approximately 8.64° x 2.9 mm wide
which represents 16 a-lines transversally and 128
samples in the axial direction.

The classification system was optimized to
recognize malignant tissue areas which are
inconspicuous in the B-mode image and other
malignant areas which are conspicuous [12].

The classifier threshold was chosen such that 98%
of the segments marked as benign represent the
gold standard results. Both malignancy classes were
coded in dark colors, benign tissue in white
(Figure 2b).

C) HISTOLOGY GOLD STANDARD

All investigated patients underwent radical
prostatectomy after the examination. Both, the tissue
classification images and the strain images were
compared to the histological findings obtained from
the pathological examination. The histology was
used as a gold standard in order to determine the
actual tissue state (Figure 2c).
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Figure 1: Schematic representing the Neuro-Fuzzy classification approach. A fuzzy interference system is constructed from
the data base, i.e. over 30,000 parameter vectors with known histological findings. New patients can classified using the
constructed classifier.
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Figure 2: a) B-mode image with marked contours for the carcinoma and the boundary of the gland. The carcinoma is not
visible in the B-mode image alone. b) malignancy map obtained from the Neuro-Fuzzy classification system. c) histology
with marked carcinoma. d) strain image



RESULTS AND DISCUSSION

Figure 2 shows the comparison of a prostate in vivo
with the B-mode image, the histology image, the
malignancy map, and the corresponding strain
image. As can be seen in Figure 2b, the classifier
was able to detect partly the carcinoma. There are
several dark segments in the corresponding
malignancy map which indicate a carcinoma at the
left close to the transducer. In the strain image the
malignant area is also clearly visible as a dark
region surrounded by a high strain artifact on the
left hand side close to the transducer. Even though
the full extent of the carcinoma is not visible the
carcinoma location is clearly visible in contrast to
the B-mode image alone. The other dark areas in the
strain image are due to calcifications (stones) which
can be partly identified by the shadows distally in
the B-mode image.

The B-mode image represents a typical ultrasonic
prostate image. As in this case carcinomas often can
not be identified correctly by the B-mode image
alone. With our system we hope to improve the
early detection of prostate carcinoma to avoid
and/or reduce the number of biopsies taken.

Using a leave-one-out test the overall classification
rate of the Neuro-Fuzzy classifier was 60.6% for
visually inconspicuous malignant tissue segments
and 68.9% for visually conspicuous segments (see
[12] for details).

In general the strain images were in good agreement
with the histological findings, although no specific
recognition rates can be stated yet.

CONCLUSIONS

We presented a new system for the acquisition and
display for both tissue characterization and
elastographic strain imaging. For preliminary in
vivo data both methods show good agree with
histology “gold standard”. Due to its real time
capability strain imaging promises better
applicability in a clinical setting. In the near future

we plan to use our real time strain imaging system
for data acquisition and tissue classification.
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