


FRAME TO FRAME FILTERING OF REAL TIME STRAIN IMAGES

A contribution of Kompetenzzentrum Medizintechnik

Andreas Pesavento, Andreas Lorenz, LP-IT Innovative Technologies GmBH, Bochum, Germany, E-Mail: lp@lp-it.de Stefan Siebers, Helmut Ermert, Hochfrequenztechnik, Ruhr-Universität Bochum, Germany

INTRODUCTION

- Frame rates in a Real-time Strain Imaging System have to be high (>20 Hz) to reduce motion artifacts
- The strain signal in a high-frame-rate system is small, it can be increased by the combination of several successive strain images similar to multicompression approaches
- In a Real-time Strain Imaging System this corresponds to a temporal filtering of the strain images which improves the SNR
- In this paper several possible filters are compared

STATISTICS AND FILTERS

• Covariance of successive strain images:

$$c(k) \approx \sigma_s^2 \begin{cases} 1 & k = 0 \\ -0.5 & |k| = 1 \\ 0 & |k| > 1 \end{cases}$$

Filter 1: Weighted Summation:

$$\overline{s}_k = \overline{s}_{k-1} + ps_k$$

0 < p < 1:persitence

Filter 2: Vibrography:

$$\overline{s}_{k} = k(s_{k} - p_{c}s_{k-1}) - p_{c}^{*}\overline{s}_{k-1}$$

$$p_{c} = e^{-j\omega_{vibration}}$$

constraint: compression is replaced by a low frequency vibration (no manual compression)

$$\omega_{vibration} = \frac{1}{4} \frac{1}{2\pi Framerate}$$

Filter 3: Adaptive Filter

$$\bar{s}_k = \bar{s}_{k-1} + p_{adaptive} \, s_k$$

 $p_{adaptive}$ = +1 or -1 based on estimated compression direction

COMPARISON

Basis:

- Theoretical comparison of SNR based on covariance of strain images c(k)
- Phantom studies with sponge phantoms
- In vitro study for the use of strain images in neurosurgery (pig brains)
- In vivo study for the use of Real-time Strain Imaging for the early detection of prostate cancer

	Amount of necessary compression (7,5 MHz)	SNR	+/-
Weighted summation (WS)	3-5 mm	Best possible SNR for constant compression	+standard hardware - instable image or high compressions
Vibro- graphy (VG)	<1 mm	SNR proportional to frame-rate	+long time stable images - vibration source necessary
Adaptive weighted summation (AWS)	1-2 mm	for constant compression, identical to WS, for vibration worse than VG	+standard hardware

CONCLUSIONS

- AWS-Filter best suitable for manual compression in Real-time Strain Imaging
- Vibrography necessary for Neurosurgey and applications where only low strains can be used