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Abstract  A compression algorithm is presented,
which utilizes the special properties of ultrasonic
radio frequency (RF) data. The compression is done
in two steps: First, linear predictive coding (LPC) is
applied, using an one-step-predictor. Further, the
remaining error of the prediction is stored using
only the necessary word length to store the signal. A
lossy extension of the algorithm is presented, which
stores only the upper bits of the error signal. The
algorithm has been tested with both, data of a
speckle phantom and in vivo data. The data could be
compressed to approximately 30-55% of the original
data size using the lossless algorithm. In compari-
son, a conventional compression tool achieves 65-
75 % of the original data size.

INTRODUCTION

Research and application of many modern ultrasonic
imaging and data processing techniques including
spatial compounding [4], tissue characterization [5],
elastography, and flow measurement require the
acquisition of multiple frames of RF echo-data. RF
data storage requires a lot of memory. However,
many redundancies in the RF data promise a good
compression rate for an especially adapted compres-
sion technique: The high dynamic range of ultra-
sonic RF echo data leads to a digital acquisition
system with a large number of bits. Hence, in wide
areas of the image the amplitudes of the echoes re-
main below the amplitude range given by the word
length of the digital system. Consequently, the up-
per bits are always zero in these areas. Also, the
limited bandwidth implies redundancies within the
echo data.

CODING OF RF DATA

Due to the high dynamic range of ultrasonic echo
data the amplitude and thus the entropy of the data
remains below the possible entropy given by the
word length of the digital systems. The entropy H
[2,3] of a set of data xi is given by

H P x P xi i
xi

= − ∑ ( ) log ( )2 (1)

with P(xi) being the probability of the samples xi. H
is never larger than the word length b of the digital
system. If H < b, lossless compression is possible.
Using an optimal alphabet, the data size can be re-
duced by a factor of b/H.
The factor b/H is especially low for acquisition
systems in which the RF data are acquired before
TGC amplification. Quantitative imaging systems
frequently omit the TGC in order to reduce system-
atic errors. To achieve a specific dynamic range
over the entire depth, a larger bit width of the digital
system is used in these systems. The limited entropy
of the data could be used for compression by coding
the RF data with an adapted alphabet, for example a
Huffman code [3]. With this alphabet a mean word
length which is equal to the entropy can be achieved
under optimal circumstances. A major disadvantage
of this technique is the dependence of the optimal
alphabet from the RF data set. Therefore, either the
alphabet has to be stored with the dataset or a sub-
optimal global alphabet has to be used.
The RF echo data are known to be approximately
Gaussian distributed for short ranges of the RF data
[1]. Since the RF echo data is a non-stationary proc-
ess, the parameters of the distribution will change.
In areas with lower echogenicity or, for a system
without TGC in larger depths, the variance of the
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signal is significantly lower. An example A-scan is
presented in Figure 1. This example demonstrates
the varying distribution of the RF data in the A-
scan. The data was sampled with no TGC applied.
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Figure 1. Sample A-scan of a speckle phantom

The knowledge about the amplitude of the echo data
being low for large regions within the image can be
exploited for the compression algorithm. The data
can be stored by adaptively decreasing or increasing
the word length depending on the local absolute
maximum of the RF data. A typical envelope repre-
senting the local maximum is presented in Figure 2.
For the reconstruction of this envelope during the
decompression, additional code words have to be
introduced, which indicate an increase or a decrease
of the necessary word length. These code words in-
crease the size of the compressed files and thus
worsens the compression. Consequently, the enve-
lope is corrected considering this effect.
Furthermore, the coding algorithm can be extended
to a lossy variant, by only storing the upper n bits
of the data. This reduces the code size of values
with high amplitude. Without the lossy extension
this values are stored with a higher relative accu-
racy than values of lower amplitude, which is not
necessary in most cases.
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Figure 2. Sample envelope for detection of the necessary
word length

LINEAR PREDICTION

Until now, the knowledge about the distribution of
ultrasonic RF echo data has been used for compres-
sion. Another a priori information about the echo
data is its limited bandwidth. In stochastical terms
the data is not white noise, meaning previous sam-
ples can be used to predict it. We used Burg’s algo-
rithm [2,3] to create a one-step-predictor by the use
of the correlation properties of the data. The pre-
dictor is a IIR-Filter of the order K:

$x a xl k l k
k

K

= −
=

∑
1

. (2)

Burg’s estimation of the optimal coefficients ak al-
ways leads to a stable filter [2]. The optimal pre-
dictor coefficients are determined for each A-scan
and stored in the compressed file. After that only
the prediction errors

e x xl l l= −$ (3)

instead of the original signal xl is stored using the
coding algorithm described above. The amplitude
and hence the entropy of this error is much lower
than the entropy of the original signal. Thus the av-
erage word length used in the coding algorithm is
much lower. The prediction error of the A-Scan of
Figure 1 is shown in Figure 3.
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Figure 3. Prediction error of the A-scan from Figure 1

The whole process of compression and decom-
pression with prediction and coding is shown in
Figure 4.
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Figure 4. Block diagram of the complete compression
and decompression algorithm.

A further degree of freedom is the order of the pre-
dictor K. There are well known algorithms which
estimate the optimal order of the predictor K from
the data. In these algorithms the order is searched
by minimizing an order criterion, which takes into
account the prediction error for an order K. For an
optimal predictor in terms of storage effort, a dif-
ferent order criterion has to be introduced which
takes into account that an optimal predictor of
higher order needs increased header storage which
reduces its saving of data storage. However, since
these algorithms are time consuming compared to
the pure calculation of the optimal coefficients with
a given order K, a constant order of K = 6 was used,
which was found to be nearly optimal for several
different data sets.

RESULTS

The compression algorithm has been tested with
three different datasets:

a)  12 bit RF data of a speckle phantom with no
TGC applied. 11 frames, 107 A-Scans, 4096
samples per A-Scan, center frequency f0 = 5
MHz, 30 MHz sampling rate

 
b)  12 bit RF data of a human back (in vivo) [4]

with no TGC applied. 11 frames, 107 A-Scans,
4096 samples per A-Scan, f0 = 5 MHz, 30 MHz
sampling rate

 
c)  8 bit RF data of a human prostate (in vivo) [5]

with a TGC applied. one frame, 281 A-Scans,
2180 samples per A-Scan, f0 = 7 MHz, 33 MHz
sampling rate

The success of the compression will be presented
by the following ratio r:

r
compressed data size

original data size
= . (4)

The use of a lossy compression leads to an error
signal sn. In order to evaluate the quality of the
data, a mean local SNR due to these errors is intro-
duced. This SNR is defined as
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This definition calculates the mean value of the
SNR’s of short ranges of the data. This value can
be compared with the quantization error of the
digital system. The mean power of the quantization
error qi is

σq i
i

N

N
q2 2

1

1
0 0833= =

=
∑ . (6)

assuming an equal random distribution of these er-
rors. An ideal adapted sine wave has a power of

P b= 2 22 (7)

introducing the bit width b of the digital system.
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This leads to the maximal SNR of

SNR max log ( . / )= 10 0166 210
2b . (8)

If the mean local SNR of Equation (7) is compared
to the maximal SNRmax of the acquisition system,
we get a worst case guess (the echo data does not
have the power of the ideal adapted sine wave of
Equation (8) ) of the effect of lossy compression on
the SNR. Since the SNR in Equation (7) is a mean
value of a local SNR, the SNR does only have to be
large enough to cover the dynamic range of the
backscattering, and not the effects of the attenua-
tion. In Table 1-3 the compression ratios and the
SNR of lossy and lossless compression of the three
data sets are compared. The compression ratio
which were achieved with the standard packer pro-
gram „ZIP“ is presented in these tables, too. In
most cases the dynamic range of the lossy com-
pression should be large enough to cover the dy-
namic range of the backscattering.

kind of comp. ratio r SNR
lossless 42 % max. 74 dB
max. 8 bit 38 % 56 dB
max. 6 bit 33 % 42 dB
Zip 63 % max. 74 dB
Table 1: compression of dataset a)

kind of comp. ratio r SNR
lossless 42 % max. 74 dB
max. 8 bit 37 % 58 dB
max. 6 bit 33 % 43 dB
Zip 54 % max. 74 dB
Table 2: compression of dataset b)

kind of comp. ratio r SNR
lossless 29 % max. 50 dB
max. 6 bit 29 % 37 dB
max. 6 bit 26 % 35 dB
Zip 40 % max. 50 dB
Table 3: compression of dataset c)

CONCLUSION

An algorithm has been developed that utilizes the
special properties of ultrasonic RF data for com-
pression. The achieved compression ratios by our
algorithm exceeds the results from conventional
packer programs significantly. It has been demon-
strated with both, phantom and in vivo data, that
the RF data can be compressed to about 30-40 % of
the original size.
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